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ℏ=1
e=1
a0=1
m=1
1

4π ϵ0
=1

Energies are in Hartree = 27.211 eV
Lengths are in Bohr = 0.5219 Angstrom

Hydrogen atom ground state energy = -0.5 Ha = -13.6 eV
etc...

The KS Hamiltonian reads

KS HAMILTONIAN

HKS=−
∇ r

2

2
+v n−e (r )+vH [ρ](r )+v xc [ρ](r )
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1-D “CRYSTAL”

......

An atomic chain:

0−a 2a 3a 5a4 a−2a−3a a

unit cell

What is the form of the wavefunction?

ψ(x+a)=ψ(x )

H (x+a)=H (x)

The Hamiltonian is periodic:

?

The wavefunction is not an observable in quantum-mechanics,
however its square-module is

|ψ(x+a)|2=|ψ(x )|2 ψ(x+a)=e iθ ψ(x)
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1-D BLOCH THEOREM

Bloch theorem:

The eigenfunctions of a periodic hamiltonian

are of the form             

where

ψk (x )=
1

√N
ei k x uk ( x)

uk (x+a)=uk (x )

H (x+a)=H (x)

ψk (x+a)=
1

√N
ei k (x +a)uk (x+a)

Let’s evaluate:

=
1

√N
ei k a ei k x uk ( x)

=ei k aψk (x) The phase factor is e i k a
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PERIODIC BOUNDARY CONDITIONS

known as Born-von Karman (BvK)

ψ(x+N a)=ψ(x )

N-atom chain
N-atom ring

Let’s choose that wavefunctions are periodic with period Na with large N

∫
0

N a

dx|ψk (x)|
2=1 ψk (x )=

1
√Na

e i k xuk (x )

assuming ∫
0

a

dx|uk (x )|
2=a



FOURIER SERIES

ψk (x )=
1

√N a
e i k x uk (x) k= 2π

N a n

uk (x+a)=uk (x )

where

Let us gather the results:
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FOURIER SERIES

b= 2π
a

ψk (x )=
1

√N a
e i k x uk (x) k= 2π

N a n

uk (x+a)=uk (x )

where

uk (x)=∑
m∈Z
C n(m)e i bm x

We can use a Fourier series for 

×b

Let us gather the results:

0 1 2−1
1
N−

1
N

1+
1
N 2+

1
N

ψk (x )=
1

√N a
e
i bN nx ∑

m∈Z
C n(m)ei b mx
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1
N−

1
N

1+
1
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1
N

ψk (x )=
1
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2
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1ST BRILLOUIN ZONE

×b

0 1 2−1
1
N−

1
N

1+
1
N 2+

1
N

ψk (x )=
1

√N a ∑
m∈Z
Cn(m)e

i( bN n+bm) x

where n∈Z

If N
2

< n ≤ 3N
2

, n '=n−N wheren '∈[− N
2

+1 , N
2 ]

ψk (x )=
1

√N a ∑
m∈Z
Cn(m)e

i( bN n '+b (m−1))x
= 1

√N a ∑
m'∈Z

Cn ' (m '+1)e
i( bN n '+bm') x

This is a wavefunction we already had, then we can limit to 

This is the 1st Brillouin zone.

n∈[− N
2

+1 , N
2 ]



POWER OF BLOCH THEOREM

H is block-diagonal:

Diagonalization for each k-point can be conducted independently



LINK WITH DFT CODES

n∈[−
N
2 +1 , N2 ]ψk (x )=

1
√Na

e
i nN b x ∑

|m|≤mmax

Cn(m)e i bm xwhere
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REAL LIFE IS 3-D



Crystal axis: a1, a2, a3

Direct lattice vector:

Periodic hamiltonian:

Reciprocal lattice axis:

Reciprocal lattice:

R=n1a1+n2a2+n3a3

H (r+R)=H (r )

b1=
2π
V a2×a3

b2=
2π
V
a3×a1

b3=
2π
V
a1×a2

G=h b1+k b2+l b3 eiG . R=1

a i .b j=2πδ ij

CRYSTAL LATTICES

{h , k , l}∈Z3

{n1 , n2 , n3}∈Z
3



1-D
where

Fourier series in 1-D:

3-D
where

Fourier series in 3-D:

FROM 1-D TO 3-D

ψk (x )=
1

√Na
e i k xuk (x ) uk (x+a)=uk (x )

ψk (r )=
1

√NV
e ik⋅ruk(r ) uk(r+R)=uk(r )

uk(r )= ∑
|G|<Gmax

C k(G)e iG⋅r

uk (x)= ∑
|m|<mmax

C k (m)e imb x



1-D
where

Fourier series in 1-D:

3-D
where

Fourier series in 3-D:

FROM 1-D TO 3-D

ψk (x )=
1

√Na
e i k xuk (x ) uk (x+a)=uk (x )

ψk (r )=
1

√NV
e ik⋅ruk(r ) uk(r+R)=uk(r )

ψk (r )=
1

√NV ∑
G<Gmax

Ck(G)ei (k+G )⋅r uk (r )

uk(r )= ∑
|G|<Gmax

C k(G)e iG⋅r

Final expression:

uk (x)= ∑
|m|<mmax

C k (m)e imb x
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HOW MANY PLANE-WAVES = CUTOFF ENERGY

V sphere=
4 π
3 Gmax

3

G=h b1+k b2+l b3Reciprocal lattice:

V PW=b1 .(b2×b3)=
(2π)3

V
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HOW MANY PLANE-WAVES = CUTOFF ENERGY

V sphere=
4 π
3 Gmax

3

G=h b1+k b2+l b3Reciprocal lattice:

V PW=b1 .(b2×b3)=
(2π)3

V

NPW=
V sphere

V PW
= V

6 π2Gmax
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Number of PW:



Volume of the sphere containing all the PW:

Volume of occupied by 1 single PW:

HOW MANY PLANE-WAVES = CUTOFF ENERGY

V sphere=
4 π
3 Gmax

3

G=h b1+k b2+l b3Reciprocal lattice:

Ecutoff=
ℏ2Gmax

2

2m

V PW=b1 .(b2×b3)=
(2π)3

V

NPW=
V sphere

V PW
= V

6 π2Gmax
3

NPW ∝V E cutoff
3/ 2

Number of PW:

Cutoff energy:

And finally



LINK WITH DFT CODES

ψk(r )=
1

√V N1N 2N 3

e
i ( n1

N1
b1 +

n2

N 2
b2 +

n3

N 3
b3)⋅r ∑

|G|2/ 2≤Ecutoff

Cn1 ,n2 ,n3
(G)e iG⋅r

n1∈[−
N 1

2
+1 ,

N1

2
]

n2∈[−
N 2

2
+1 ,

N 2

2
]

n3∈[−
N 3

2
+1 ,

N 3

2
]

where

Regular sampling of the 1st Brillouin zone



Adding more PW or increasing the cutoff energy makes ALWAYS the result more accurate

ECBL

Silicon

Etotal(Ecutoff)

PW ARE A SYSTEMATIC BASIS

PW basis functions are orthogonal + quantum-mechanics variational principle



EXAMPLE: BAND STRUCTURE
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Why should we treat the core electrons?

1. They do not participate to the chemical bonds

2. They converge very slowly with respect to the PW basis

PSEUDOPOTENTIAL IDEA

Si:  1s2 2s2 2p6 3s2 3p2
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Why should we treat the core electrons?

1. They do not participate to the chemical bonds

2. They converge very slowly with respect to the PW basis

PSEUDOPOTENTIAL IDEA

First, frozen-core approximation:

The core electron do not change with the environment

same in the isolated atom, a molecule, an ion, a crystal

Si:  1s2 2s2 2p6 3s2 3p2

Second, pseudopotential:

Create an effective potential that simulates the sum of the nucleus 
attraction and core electron repulsion



All electron

rV (r )

FICTIOUS EXAMPLE

ψc (r )

ψv (r)



All electron

rV (r )

Pseudopotentials

r

FICTIOUS EXAMPLE

ψc (r )

ψv (r)
~ψv (r)

~V (r )



Pseudopotentials

r

EXAMPLE

~ψv (r)

~V (r )

|CG|
2

|G|

~ψv (r)

ψc (r )



LINK WITH DFT CODES

pseudopotentials are
- element-specific
- generated for an isolated spherical atom (with another code)
- read from a file shipped with the code or obtained somewhere else

Example:

Techniques: norm-conserving pseudos, ultra-soft pseudos, PAW
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2

2
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ρ(r )= ∑
k ,iocc

|ψk i(r )|
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Diagonalization

depends on the density
 non linear equations

Physical properties

NON-LINEAR SCHRODINGER EQUATION



H (r )=−
∇ r

2

2
+v n−e (r)+vH [ρ](r )+v xc [ρ](r )

H k ψk i=ϵk iψk i

ρ(r )= ∑
k ,iocc

|ψk i(r )|
2

Diagonalization

depends on the density
 non linear equations

Physical properties

NON-LINEAR SCHRODINGER EQUATION

chicken and egg problem



H (r )=−
∇ r

2

2
+v n−e (r)+vH [ρ](r )+v xc [ρ](r )

H k ψk i=ϵk iψk i

ρ(n )(r )= ∑
k ,i occ

|ψk i(r)|
2

First guess for             

Diagonalization

depends on the density
 non linear equations

if |ρ(n )−ρ(n−1)|> tol

Physical properties

0r 

NON-LINEAR SCHRODINGER EQUATION



LINK TO DFT CODES

ρ(n ) in=F [ρ(n) out ,ρ(n−1) out ,ρ(n−2) out , ...]

|ρ(n )−ρ(n−1)|> tol

In practice, it is a slightly more complicated
Instabilities, slow convergence happen

ρ(n )out (r )= ∑
k ,i occ

|ψk i(r )|
2

H [ρin ](r )

simple mixing
Pulay
Kerker preconditionning
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● Book: Parr & Yang (1989)

● Online: ABC of DFT of Burke 
http://dft.uci.edu/research.php#theabcofdft

● Book: Ashcroft & Mermin (1976)

● Book: R. Martin (2004)

TO KNOW MORE

http://dft.uci.edu/research.php#theabcofdft
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