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Periodic simulation cell ) =

0, L), periodic lattice L = LZ*

Spin-unpolarized system with )/ ionic cores and /N valence electron pairs

High entropy alloy
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Periodic simulation cell Q = [0, L)°, periodic lattice . = L7’

Spin-unpolarized system with )/ ionic cores and N valence electron pairs

Kohn-Sham equations on the periodic simulation cell (PSC-KS)
(
1
K—§A + Vloe + 1 + v, + v’,fS) w?] (r)=e%0%r)  ¢? L-periodic

/¢?(r)*¢9,(r) dr = 0y, 8(1) < 5[2) < ...
? N
“(r) =2 [)(r))
i=1

—Avf( )—47r( (r) — (p")) vy L-periodic s.t. (v}) =0
v(r) =

/\

—Cpp(r )1/ ’ (Xcu model - just for simplicity)

1
o H, = —§A + Vioe + Up1 + vf + v;jcz Kohn-Sham Hamiltonian associated to p

e Aufbau principle: for most systems, ) < --- < £} lowest N eigenvalues of H ,
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Fourier (planewave) expansions of [L-periodic functions

The main unknown functions in the PSC-KS equations (p, vf, ;) are
[L-periodic functions and can therefore be expanded in Fourier series

u(r) = ugeg(r)
Gell*
with
. It ; . ez'G-r . .
L* := TZ (dual lattice), eq(r) = E (Fourier mode with momentum G),

1 |
ug = (eq, u>LI2)er(Q) = ORE /Qu(r)e_“G'r dr (G-Fourier coeff. of v)

We have in particular

/ lu(r)|* dr = Z lug|? (Parseval relation)
{2 Gel*

L ——— e~

[—iVu]q = Glg, [—Au]g = |G|*ug
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Fourier (planewave) expansions of [L-periodic functions (continued)

Since the Goedecker-Teter-Hutter (GTH) pseudopotentials used in DFTK
are very smooth, so are the functions /', vfo, ) (elliptic regularity). As a
consequence, their Fourier coefficients decay very fast

Consequence: for an energy cut-off £, ‘not too large’,
Y [Weee
Gel* | @gEC

are excellent approximations of the 1)’s

More about that
e proof in 1D for linear Schrodinger equations (blackboard)
e hands-on sessions (this afternoon)

e Genevieve’s lecture (tomorrow morning)
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Planewave discretization of p, v}' and ¢,

We introduce the finite subsets of Fourier modes
L0 = {G cL*| |G| < \/QEC} and L0 = {G e L*| |Gl < zEg}
and the associated finite-dimensional subspaces of [L-periodic functions

X]g = Span(eg, G € LE?) and XEé = Span(eq, G € L*E?)

We will see that

e Kohn-Sham orbitals ¢, are discretized in X 8 spaces

e densities p and Hartree potentials V" should then be discretized in X
spaces with £/ > 4F, |

We have
o N = #L;0 = dim XF ~ X2 10| £
o N = #L:7 = dim X, ~ 22|0| B/
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Planewave discretization of p, U/I;I and v, (continued)

We seek approximations v; , p, v of 1, p°, vfo of the form

Gy =Y [ilgealr) (€ XY)

GELE?
plr)= > peea(r) (€ Xp) and o'(r)= ) [Mgea(r) (€ Ap)
GEL*E; GEIL*EF

and impose that these quantities fulfill the conditions

(i i) 12, () = Oy —D08(x) =4 (p(r) — (p)) with (v") =0, p(r) =2 Z [i(r)[*

The first two conditions are very easy to handle:
(Wi, Yir) L2,(2) = O & WUy = 0y

~A(r) = 4 (p(r) = (p)) with (") =0 ¢ g = rEpada s

~ O
where U; € C"Z is a column vector collecting the Fourier coefficients of ),
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Planewave discretization of p, U/I;I and v, (continued)

The relation p(r) = 237 |1;(r) ]2 reads in momentum space

/\>l< —~

pa =29 WZ > Wilelile e (1)

1=1 *(O)
G/elL E.

Consequences:

1. for consistency, densities must be discretized on larger planewave basis sets
%Exg = P€X4%

We must choose £/ = ASCEC with \,. > 2 (supersampling parameter)

2. computing p from the v);’s by directly implementing (1) is very expensive
computational cost: O(N )2 |Q|°E?)

A much more efficient way is to use zero padding and FFT (see below)
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Fast Fourier Transform (FFT)
XD/ = Span(eq, G € L*D) where ILE/ = {G cL"| |Gl < 2Eé}

N = #L3 = dim Xy = ny,  withng € N
L

Z3 allowing one to discretize of L-periodic func-

Z3)N Q. The map

Uniform real-space grid —

tions with nE, = ND dof. Let ()1 jent = (£
—/=""FE! gl

L CNEé (ug) — | u ugeg(r C (CNE'
= G GeL*f GEG\Ly
‘ GELZE
[ (K. L L L [ [ 1§j§ND
is bijective with explicit inverse given by B
NY NU

. E! . . El

]:NE;/ :C B 3 (u])lngNg/ — | Ug ND g ue_g(r;) cC
) ‘ 1<]<ND
Fe GG]L*D

D

The maps F Nm and F_. NG can be applied to a vector in C Y in O(N3 1og Ng)

operations thanks to the Fast Fourier Transform (FFT) algorithm
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Application to the computation of the map (¢;) — p
1. Zero padding: embed the N functions v); originally in X ﬁg and stored
in memory in the momentum representation in the largest space X E, by

adding Fourier coefficients equal to zero for G € LZQ \ L*E?

2. Transform the v);’s in the real-space representation using inverse FFT
W FFT—!
<[¢1]G)G6L*E§

C

(Wi]j)lgjgNg, cost: O<NNEg log Ngg)

C

3. Compute p in the real-space representation
N
pi =2 |Wil;>  cost: O(NNp)
i=1

4. Transform p back to momentum space using FFT

FFT
<pj)1§j§Ng, <PG)GELZ§ cost: O(NNE(@ log Ngg)

C C

Total cost O(N)\SP\Q|E§/2 log(...)) to be compared with O(N|Q|*E?)
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The Kohn-Sham map in the spaces (X g , Xe1)

e most algorithms to solve the (nonlinear) KS equations are based on the
Kohn-Sham map 7" = g o f (see Michael’s talk)

N
Oin i> (¥i)1<i<n lowest eigenmodes of H SN Pout = 2 Z |¢z‘\2
i=1
e at the discrete level, ¢, € X Jg and pi,, pout € X E, with £/ = AngC
e the map g is implemented using zero padding and 2 FFTs (see above)

e the map f is computed using iterative Krylov methods (see Michael’s
talk) which boil down to evaluating matrix-vector products

Remaining question: how to compute efficiently an approximation ffp?p of
H,in Xy for p € X2 and ¢ € X with

e p known in both real space (p;), ND and momentum space (ﬁG)GeLZ;

C C

e ¢/ given in momentum space (@G)G e
C

o I/{\p;b computed in momentum space
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Computation of an approximation I/{\p@ c X 1«% of Hpforpe X E and € X 1%3
H,= —%A + Vioe + Upl + UE + vgc in real-space representation

1. Kinetic energy operator: super easy! —1Ay € X and [—/%A\w} o= %AG

2.v, € X is computed explicitly in momentum space using [Z[I){\] o= |4—7T’2AG

and mapped to real-space by inverse FFT

3. (U(r))) 1< < ND is computed in real space from (p;), ND

C C

4. the term (vy,. + v,' + v°)¢) is approximated by

—_—

[(Uloc + UE + UEC)QMG — 1G€L*E? [fND,

Ee

.

[((Uloc(rj) -+ UE(I']') + U};C(rj))@b(rj))gjgj\fg,

5. v,19 is approximated directly in momentum space
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Distance to reference energy (Hartree) in log
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Ecut (Hartree)
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Measured

A very simple example: the H, molecule =
Cubic box of size L i
Energy cut-off F, i "
Default )\, = 2 5 " g
20 .5
uLJ) Q
S
3

bohr
L"3 X Ecut"
40

g 30 g

—— L=5 g §

—— L=75 = S

—— L=10 320 5

L=15 - £

1 1 1 1 1 1 1 8

10 20 30 40 50 60 70

L (bohr
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Variational interpretation

e at each SCF iteration, we have a density p = p, € X ]5] and we would

/
C

like to compute approximations in A’ g of the lowest eigenmodes of /-,

e a standard way is to use a variational approximation consisting in solv-
ing the eigenvalue problem: seek (¢,7) € R x X E% such that

Vo € X, (o, H) = =(6,7)

e this is equivalent to seeking the lowest eigenmodes of the Hermitian ma-
O, §O
trix H, € C"2*"E with entries

H)lgar = (ea|H,leq), G,G ¢ LE?

e the matrix-vector product defined in the previous slide is equivalent to
approximating the matrix H, as follows

1
Hylaa = (ea| — 5Alear) + (elvlea)  +  (ea|vioe + v + V) lec)

N s VY VY
-~

2
:%5(;@/ (exact)

better and better when £. — oo and/or )\, — o0

exact whenever \;:>2  approximated by numerical quadrature



2 - Calculations on periodic crystals using k-points



2 - Calculations on periodic crystals using k-points 15

Perfect crystal
e Bravais lattice L. := ¢Z and unit cell 2 := [0, a)’, reciprocal lattice L*

e NV valence electron pairs per unit cell

BCC structure Diamond structure

Using the method described in Part I with Q = [0,a)’ and PBC at the
boundary of () would lead to completely wrong results
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Perfect crystal
e Bravais lattice L. := ¢Z and unit cell 2 := [0, a)’, reciprocal lattice L*

e NV valence electron pairs per unit cell

BCC structure Diamond structure

Periodic simulation cell: supercell made of /> copies of the unit cell
o Oy =10, Ma)?, Ly = (aM)Z3
e N, = N M3 valence electron pairs in the simulation cell

e computational cost scales as O()/*(Na3)EY* log(...))
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Perfect crystal
e Bravais lattice L. := ¢Z and unit cell 2 := [0, a)’, reciprocal lattice L*

e NV valence electron pairs per unit cell

BCC structure Diamond structure

Example: BCC iron
e 2 atoms per unit cell, 8 valence electrons per atom, N = 8, a ~ 5.42 bohr
e /. =20 Ha and M/ = 8 are reasonable parameters

e number of planewaves/grid points for the discretization of p: ~ 10°
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From supercell to unit cell calculations using symmetries

In this case, the external potential v;,. + v, is not only LL,/-translation in-
variant, but also [L-translation invariant

Assuming there is no spontaneous symmetry breaking, o’ and vi}) are [L-periodic

We can thus assume that at each SCF iteration p;, and p,,; are [L-periodic
N

Oin (¢Z)1<Z< N lowest eigenmodes of /7, SN pout =2 Z ]@bz
1=1

L—per LM per IL per

H o is invariant w.r.t. the L-translation group, an abelian group & of order
M? acting on L (Qy)

We denote by H ), the matrix of /7, in the approximation space
|GM|2

XMEC = Spﬂll(@(;M, Gy € IL’MEC> LMEC = {GM S LM | < Ec}a

set Ny g, = #IL ME, = = dim X} g, and ignore num. quadrature errors (\,. = 00)
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From supercell to unit cell calculations (the pedestrian way)

e For R € L, denote by 7 : L?_ (/) — L?_.(Q)) the R-translation operator

per per

Vi € Ly (), (TR)(xr) = 6(r — R)

Note that if R € L and R, € L/, TrR1r,, = Tr S0 that there are in fact
M? such operators

e We have for all R € L and G, € L},
eiGM-(I‘—R)

‘QM|1/2

So e is an eigenfunction of Ty associated with the eigenvalue ¢ /¢

— ¢ G Req(r)

(TR@GM><r) =

e Any G, € L}, can be decomposed in a unique way as

3
Gy=G+k with Ge¢lL® and k¢ [—z,z> and ¢ (GMR _ —ikR
a a

e We observe that

mT

-Qf ==L, 1) ? is in fact the first Brillouin zone of the crystal
— k belongs to the regular grid L%, N Q*, which contains //* points
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From supercell to unit cell calculations (the pedestrian way, continued)
o It follows from the previous argument that X’ ]\C} 5, Is Tr-invariant for any

R € L, and that the joint eigenspaces of the 7g’s in X 1\9 E, are

2
G + k| -

Xb%k =span(ex g, G € Ly y), Lg ) ={GelL"| E.}

VREL, WyxeXy, [(mrin)(r)=e "Ry(r)
e Any ¢, € X l%k is of the form

Ui(r) = eXTu(r) with o€ Xp . =span(eg, G € Ly, ) C L?.(Q)

per

e Since H , is L-translation invariant, it commutes with the 7, R € L, and
its variational approximation in X’ ]\9 i, 1s therefore block-diagonal in the

decomposition
O per
X]\/IaEC o @ XEC?k
kel* N

e Instead of diagonalizing one big Hermitian matrix of size NJ\C} B, X Nj\(} X,
we just have to diagonalize 1/’ small Hermitian matrices of sizes N", x N\
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From supercell to unit cell calculations (the pedestrian way, continued)
e Using the decomposition
Xiip = € AXL (e gathering the G,’s with same k)
keL* N
the matrix H,, can be block diagonalized

H, 0 0---0 0
(0k1Hk20---0 0\

=
S
[

\ 0 0 0 0H )
e The entries of the matrices Hy are

Hylce = (exral|H)| exrar) G,G' ¢ L*E?,k
G + k|

+ (erralval exear) + (eal vioe + v, + U)lew)

NG 7

independent of k

= dca!
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From supercell to unit cell calculations (the abstract way)

The theory of group representation tells us that

e the (very large) matrix H,; is unitary equivalent to a block diagonal
matrix, each block corresponding to an irreducible representation of
the group

e since & is abelian, it has #® = JM/? irreducible representations, which
can be labeled by the characters of the group

e in the present case, the characters are the functions Y, : & — C defined by
vk e Li, /L =L, NQ*, VR eL/Ly, xx(m)=c * 8

e the unitary transform block-diagonalizing the Hamiltonian matrix has
an explicit expression involving the characters of the group

Discrete Bloch transform

uk(r) = Z Xk(™TR)" (TRU)(T) = Z eik'Ru(r —R) = Z u(r + R)e_ik'R

TRED TRED RelLNQ,,
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Thermodynamic limit: what happens when M — oo0?

Assuming there is no spontaneous symmetry breaking (proven for rHF)

( 0

1
HP = —§A + Vloe + Vp] + vg) + % L-periodic self-adjoint op. on L*(R?)

V' =1 (_ooe(Hp)  (GS density matrix), p’(r) = 27"(r,r), / pP(r)dr = N
0

\

Using Bloch transform

(01 . . .
H! = 5(—zV — k)2 + Vloe + Un1k + vg) + U self-adjoint op. on L>_ ()

per

+00
O [
H = Z Enk|Unk) (Unk|  WIth  (upk|upng) 12 () = Opnr, €1k < €2k < -+

per

N\

n=1
+00
P =2 S LluPdk [ e =N
\ ’ n=1 Q

The supercell method with 2, = [0, M a)’, E. and \,, = oo, amounts to
discretizing the Brillouin zone 2" with the grid L., N ()", and using for each

0
k € L;, N Q* a variational approximations of /| in the space X Ef X



