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Periodic simulation cell Ω = [0, L)3, periodic lattice L = LZ3

Spin-unpolarized system with M ionic cores and N valence electron pairs

High entropy alloy Amorphous system

but also...

+
Isolated molecule 2D material
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Periodic simulation cell Ω = [0, L)3, periodic lattice L = LZ3

Spin-unpolarized system with M ionic cores and N valence electron pairs

Kohn-Sham equations on the periodic simulation cell (PSC-KS)

[(
−1

2
∆ + vloc + vnl + vH

ρ0 + vxc
ρ0

)
ψ0
i

]
(r) = ε0

iψ
0
i (r) ψ0

i L-periodicˆ
Ω

ψ0
i (r)∗ψ0

i′(r) dr = δii′, ε0
1 ≤ ε0

2 ≤ · · ·

ρ0(r) = 2

N∑
i=1

|ψ0
i (r)|2

−∆vH
ρ0(r) = 4π

(
ρ0(r)− 〈ρ0〉

)
vH
ρ0 L-periodic s.t. 〈vH

ρ0〉 = 0

vxc
ρ0(r) = −CDρ

0(r)1/3 (Xα model - just for simplicity)

•Hρ := −1

2
∆ + vloc + vnl + vH

ρ + vxc
ρ : Kohn-Sham Hamiltonian associated to ρ

• Aufbau principle: for most systems, ε0
1 ≤ · · · ≤ ε0

N lowest N eigenvalues of Hρ0
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Fourier (planewave) expansions of L-periodic functions

The main unknown functions in the PSC-KS equations (ρ, vH
ρ , ψi) are

L-periodic functions and can therefore be expanded in Fourier series

u(r) =
∑
G∈L∗

ûGeG(r)

with

L∗ :=
2π

L
Z3 (dual lattice), eG(r) :=

eiG·r

|Ω|1/2
(Fourier mode with momentum G),

ûG := 〈eG, u〉L2
per(Ω) =

1

|Ω|1/2

ˆ
Ω

u(r)e−iG·r dr (G-Fourier coeff. of u)

We have in particularˆ
Ω

|u(r)|2 dr =
∑
G∈L∗

|uG|2 (Parseval relation)

̂[−i∇u]G = GûG, [̂−∆u]G = |G|2ûG
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Fourier (planewave) expansions of L-periodic functions (continued)

Since the Goedecker-Teter-Hutter (GTH) pseudopotentials used in DFTK
are very smooth, so are the functions ρ0, vH

ρ0, ψ0
i (elliptic regularity). As a

consequence, their Fourier coefficients decay very fast

Consequence: for an energy cut-off Ec ‘not too large’,∑
G∈L∗ | |G|

2

2 ≤Ec

[ψ0
i ]GeG

are excellent approximations of the ψ0
i ’s

More about that
• proof in 1D for linear Schrödinger equations (blackboard)
• hands-on sessions (this afternoon)
• Geneviève’s lecture (tomorrow morning)
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Planewave discretization of ρ, vH
ρ and ψi

We introduce the finite subsets of Fourier modes

L∗©Ec
:=
{
G ∈ L∗ | |G| ≤

√
2Ec

}
and L∗�E′c :=

{
G ∈ L∗ | |G|∞ ≤

√
2E ′c

}
and the associated finite-dimensional subspaces of L-periodic functions

X©Ec
:= Span(eG, G ∈ L∗©Ec

) and X�
E′c

:= Span(eG, G ∈ L∗�E′c )

We will see that
• Kohn-Sham orbitals ψi are discretized in X©Ec

spaces

• densities ρ and Hartree potentials V H should then be discretized in X�
E′c

spaces with E ′c ≥ 4Ec

We have
• N©Ec

:= #L∗©Ec
= dimX©Ec

∼
√

2
3π2 |Ω|E

3/2
c

• N�
E′c

:= #L∗�E′c = dimX�
E′c
∼ 2

√
2

π3 |Ω|E ′c
3/2
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Planewave discretization of ρ, vH
ρ and ψi (continued)

We seek approximations ψi , ρ, vH of ψ0
i , ρ0, vH

ρ0 of the form

ψi(r) =
∑

G∈L∗©Ec

[̂ψi]GeG(r) (∈ X©Ec
)

ρ(r) =
∑

G∈L∗�
E′c

ρ̂GeG(r) (∈ X�
E′c

) and vH(r) =
∑

G∈L∗�
E′c

[̂vH]GeG(r) (∈ X�
E′c

)

and impose that these quantities fulfill the conditions

〈ψi, ψi′〉L2
per(Ω) = δii′, −∆vH(r) = 4π (ρ(r)− 〈ρ〉) with 〈vH〉 = 0, ρ(r) = 2

N∑
i=1

|ψi(r)|2

The first two conditions are very easy to handle:

〈ψi, ψi′〉L2
per(Ω) = δii′ ⇔ Ψ̂∗i Ψ̂i′ = δii′

−∆vH(r) = 4π (ρ(r)− 〈ρ〉) with 〈vH〉 = 0 ⇔ [̂vH]G =
4π

|G|2
ρ̂GδG6=0

where Ψ̂i ∈ CN
©
Ec is a column vector collecting the Fourier coefficients of ψi
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Planewave discretization of ρ, vH
ρ and ψi (continued)

The relation ρ(r) = 2
∑N

i=1 |ψi(r)|2 reads in momentum space

ρ̂G = 2|Ω|−1/2
N∑
i=1

∑
G′∈L∗©Ec

[̂ψi]
∗
G′ [̂ψi]G+G′ (1)

Consequences:
1. for consistency, densities must be discretized on larger planewave basis sets

ψi ∈ X©Ec
⇒ ρ ∈ X©4Ec

We must choose E ′c = λ2
scEc with λsc ≥ 2 (supersampling parameter)

2. computing ρ from the ψi’s by directly implementing (1) is very expensive

computational cost: O(Nλ3
sc|Ω|2E3

c )

A much more efficient way is to use zero padding and FFT (see below)



1 - Calculations on periodic simulation cells 8
.

Fast Fourier Transform (FFT)

X�
E′c

:= Span(eG, G ∈ L∗�E′c ) where L∗�E′c :=
{
G ∈ L∗ | |G|∞ ≤

√
2E ′c

}
N�
E′c

:= #L∗�E′c = dimX�
E′c

= n3
E′c

with nE′c ∈ N

Uniform real-space grid L
nE′c

Z3 allowing one to discretize of L-periodic func-

tions with n3
E′c

= N�
E′c

d.o.f. Let (rj)1≤j≤N�
E′c

:= ( L
nE′c

Z3) ∩ Ω. The map

F−1
N�
E′c

: CN�
E′c 3 (ûG)G∈L∗�

E′c
7→

uj :=
∑

G∈L∗�
E′c

ûGeG(rj)


1≤j≤N�

E′c

∈ CN�
E′c

is bijective with explicit inverse given by

FN�
E′c

: CN�
E′c 3 (uj)1≤j≤N�

E′c
7→

ûG :=
|Ω|
N�
E′c

∑
1≤j≤N�

E′c

uje−G(rj)


G∈L∗�

E′c

∈ CN�
E′c

The mapsFN�
E′c

andF−1
N�
E′c

can be applied to a vector in CN�
E′c inO(N�

E′c
logN�

E′c
)

operations thanks to the Fast Fourier Transform (FFT) algorithm
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Application to the computation of the map (ψi)→ ρ

1. Zero padding: embed the N functions ψi originally in X©Ec
and stored

in memory in the momentum representation in the largest space X�
E′c

by
adding Fourier coefficients equal to zero for G ∈ L∗�E′c \ L

∗©
Ec

2. Transform the ψi’s in the real-space representation using inverse FFT

([̂ψi]G)G∈L∗�
E′c

FFT−1

−→ ([ψi]j)1≤j≤N�
E′c

cost: O(NN�
E′c

logN�
E′c

)

3. Compute ρ in the real-space representation

ρj = 2

N∑
i=1

|[ψi]j|2 cost: O(NN�
E′c

)

4. Transform ρ back to momentum space using FFT

(ρj)1≤j≤N�
E′c

FFT−→ (ρ̂G)G∈L∗�
E′c

cost: O(NN�
E′c

logN�
E′c

)

Total cost O(Nλ3
sp|Ω|E

3/2
c log(...)) to be compared with O(N |Ω|2E3

c )
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The Kohn-Sham map in the spaces (X©Ec
,X�

E′c
)

•most algorithms to solve the (nonlinear) KS equations are based on the
Kohn-Sham map T = g ◦ f (see Michael’s talk)

ρin
f−→ (ψi)1≤i≤N lowest eigenmodes of Hρin

g−→ ρout = 2

N∑
i=1

|ψi|2

• at the discrete level, ψi ∈ X©Ec
and ρin, ρout ∈ X�

E′c
with E ′c = λ2

spEc

• the map g is implemented using zero padding and 2 FFTs (see above)
• the map f is computed using iterative Krylov methods (see Michael’s

talk) which boil down to evaluating matrix-vector products

Remaining question: how to compute efficiently an approximation H̃ρψ of
Hρψ in X©Ec

for ρ ∈ X�
E′c

and ψ ∈ X©Ec
with

• ρ known in both real space (ρj)1≤j≤N�
E′c

and momentum space (ρ̂G)G∈L∗�
E′c

• ψ given in momentum space (ψ̂G)
G∈L∗©Ec

• H̃ρψ computed in momentum space
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Computation of an approximation H̃ρψ ∈ X©Ec
of Hρψ for ρ ∈ X�

E′c
and ψ ∈ X©Ec

Hρ = −1

2
∆ + vloc + vnl + vH

ρ + vxc
ρ in real-space representation

1. Kinetic energy operator: super easy! −1
2∆ψ ∈ X©Ec

and ̂[−1
2∆ψ

]
G

= |G|2
2 ψ̂G

2. vH
ρ ∈ X�

E′c
is computed explicitly in momentum space using [̂vH

ρ ]
G

= 4π
|G|

2
ρ̂G

and mapped to real-space by inverse FFT

3. (vxc
ρ (rj))1≤j≤N�

E′c
is computed in real space from (ρj)1≤j≤N�

E′c

4. the term (vloc + vH
ρ + vxc

ρ )ψ is approximated by

̂
[ ˜(vloc + vH

ρ + vxc
ρ )ψ]

G
= 1

G∈L∗©Ec

[
FN�

E′c

[(
(vloc(rj) + vH

ρ (rj) + vxc
ρ (rj))ψ(rj)

)
1≤j≤N�

E′c

]]
G

5. vnlψ is approximated directly in momentum space
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A very simple example: the H2 molecule

Cubic box of size L
Energy cut-off Ec,
Default λsc = 2
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Variational interpretation
• at each SCF iteration, we have a density ρ = ρin ∈ X�

E′c
and we would

like to compute approximations in X©Ec
of the lowest eigenmodes of Hρ

• a standard way is to use a variational approximation consisting in solv-
ing the eigenvalue problem: seek (ε, ψ) ∈ R×X©Ec

such that

∀φ ∈ X©Ec
, 〈φ,Hρψ〉 = ε〈φ, ψ〉

• this is equivalent to seeking the lowest eigenmodes of the Hermitian ma-
trix Hρ ∈ CN

©
Ec
×N©Ec with entries

[Hρ]GG′ := 〈eG|Hρ|eG′〉, G,G′ ∈ L∗©Ec

• the matrix-vector product defined in the previous slide is equivalent to
approximating the matrix Hρ as follows

[Hρ]GG′ = 〈eG| −
1

2
∆|eG′〉︸ ︷︷ ︸

=
|G|2

2 δGG′ (exact)

+ 〈eG|vH
ρ |eG′〉︸ ︷︷ ︸

exact whenever λsc≥2

+ 〈eG|vloc + vnl + vxc
ρ |eG′〉︸ ︷︷ ︸

approximated by numerical quadrature

better and better when Ec →∞ and/or λsc →∞
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Perfect crystal
• Bravais lattice L := aZ and unit cell Ω := [0, a)3, reciprocal lattice L∗

• N valence electron pairs per unit cell

BCC structure Diamond structure

Using the method described in Part I with Ω = [0, a)3 and PBC at the
boundary of Ω would lead to completely wrong results
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Perfect crystal
• Bravais lattice L := aZ and unit cell Ω := [0, a)3, reciprocal lattice L∗

• N valence electron pairs per unit cell

BCC structure Diamond structure

Periodic simulation cell: supercell made of M 3 copies of the unit cell
• ΩM = [0,Ma)3, LM = (aM)Z3

• NM = NM 3 valence electron pairs in the simulation cell

• computational cost scales as O(M 6(Na3)E
3/2
c log(...))
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Perfect crystal
• Bravais lattice L := aZ and unit cell Ω := [0, a)3, reciprocal lattice L∗

• N valence electron pairs per unit cell

BCC structure Diamond structure

Example: BCC iron
• 2 atoms per unit cell, 8 valence electrons per atom, N = 8, a ' 5.42 bohr
• Ec = 20 Ha and M = 8 are reasonable parameters
• number of planewaves/grid points for the discretization of ρ: ∼ 106

We can do much better by taking advantage of the symmetries of the system!
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From supercell to unit cell calculations using symmetries

In this case, the external potential vloc + vnl is not only LM-translation in-
variant, but also L-translation invariant

Assuming there is no spontaneous symmetry breaking, ρ0 and vH
ρ0 are L-periodic

We can thus assume that at each SCF iteration ρin and ρout are L-periodic

ρin︸︷︷︸
L−per

f−→ (ψi)1≤i≤N︸ ︷︷ ︸
LM−per

lowest eigenmodes of Hρin

g−→ ρout︸︷︷︸
L−per

= 2

N∑
i=1

|ψi|2

Hρin
is invariant w.r.t. the L-translation group, an abelian group G of order

M 3 acting on L2
per(ΩM)

We denote by HM the matrix of Hρin
in the approximation space

XM,Ec := span(eGM
, GM ∈ L∗©M,Ec

), L∗©M,Ec
:= {GM ∈ L∗M |

|GM |2

2
≤ Ec},

set NM,Ec = #L∗©M,Ec
= dim XM,Ec, and ignore num. quadrature errors (λsc =∞)
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From supercell to unit cell calculations (the pedestrian way)
• For R ∈ L, denote by τR : L2

per(ΩM)→ L2
per(ΩM) the R-translation operator

∀ψ ∈ L2
per(ΩM), (τRφ)(r) = φ(r−R)

Note that if R ∈ L and RM ∈ LM , τR+RM
= τR so that there are in fact

M 3 such operators
•We have for all R ∈ L and GM ∈ L∗M ,

(τReGM
)(r) =

eiGM ·(r−R)

|ΩM |1/2
= e−iGM ·ReG(r)

So eG is an eigenfunction of τR associated with the eigenvalue e−iGM ·R

• Any GM ∈ L∗M can be decomposed in a unique way as

GM = G+k with G ∈ L∗ and k ∈
[
−π
a
,
π

a

)3

and e−iGM ·R = e−ik·R

•We observe that
– Ω∗ :=

[
− π

a ,
π
a

)3 is in fact the first Brillouin zone of the crystal
– k belongs to the regular grid L∗M ∩ Ω∗, which contains M 3 points



2 - Calculations on periodic crystals using k-points 18
.

From supercell to unit cell calculations (the pedestrian way, continued)
• It follows from the previous argument that X©M,Ec

is τR-invariant for any
R ∈ L, and that the joint eigenspaces of the τR’s in X©M,Ec

are

X©Ec,k
:= span(ek+G, G ∈ L∗Ec,k

), L∗©Ec,k
:= {G ∈ L∗ | |G + k|2

2
≤ Ec}

∀R ∈ L, ∀ψk ∈ X©Ec,k
, (τRψk)(r) = e−ik·Rψk(r)

• Any ψk ∈ X©Ec,k
is of the form

ψk(r) = eik·ru(r) with u ∈ X per
Ec,k

:= span(eG, G ∈ L∗Ec,k
) ⊂ L2

per(Ω)

• SinceHρ is L-translation invariant, it commutes with the τR, R ∈ L, and
its variational approximation in X©M,Ec

is therefore block-diagonal in the
decomposition

X©M,Ec
=

⊕
k∈L∗M∩Ω∗

X per
Ec,k

• Instead of diagonalizing one big Hermitian matrix of sizeN©M,Ec
×N©M,Ec

,
we just have to diagonalize M 3 small Hermitian matrices of sizes Nper

Ec,k
×Nper

Ec,k
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From supercell to unit cell calculations (the pedestrian way, continued)
• Using the decomposition

X©M,Ec
=

⊕
k∈L∗M∩Ω∗

X per
Ec,k

(i.e. gathering the GM’s with same k)

the matrix HM can be block diagonalized

HM =


Hk1 0 0 · · · 0 0
0 Hk2 0 · · · 0 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 0 · · · 0 Hk

M3


• The entries of the matrices Hk are

[Hk]GG′ = 〈ek+G|Hρ| ek+G′〉 G,G′ ∈ L∗©Ec,k

= δGG′
|G + k|2

2
+ 〈ek+G|vnl| ek+G′〉 + 〈eG| vloc + vH

ρ + vxc
ρ |eG′〉︸ ︷︷ ︸

independent of k
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From supercell to unit cell calculations (the abstract way)

The theory of group representation tells us that
• the (very large) matrix HM is unitary equivalent to a block diagonal

matrix, each block corresponding to an irreducible representation of
the group
• since G is abelian, it has #G = M 3 irreducible representations, which

can be labeled by the characters of the group
• in the present case, the characters are the functions χk : G→ C defined by

∀k ∈ L∗M/L∗ ≡ L∗M ∩ Ω∗, ∀R ∈ L/LM , χk(τR) = e−ik·R

• the unitary transform block-diagonalizing the Hamiltonian matrix has
an explicit expression involving the characters of the group

Discrete Bloch transform

uk(r) =
∑
τR∈G

χk(τR)∗ (τRu)(r) =
∑
τR∈G

eik·R u(r−R) =
∑

R∈L∩ΩM

u(r + R)e−ik·R
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Thermodynamic limit: what happens when M →∞?

Assuming there is no spontaneous symmetry breaking (proven for rHF)
Hρ0

:= −1

2
∆ + vloc + vnl + vH

ρ0 + vxc
ρ0 L-periodic self-adjoint op. on L2(R3)

γ0 = 1(−∞,εF](Hρ0) (GS density matrix), ρ0(r) = 2γ0(r, r),

ˆ
Ω

ρ0(r) dr = N

Using Bloch transform

Hρ0

k :=
1

2
(−i∇ + k)2 + vloc + vnl,k + vH

ρ0 + vxc
ρ0 self-adjoint op. on L2

per(Ω)

Hρ0

k =

+∞∑
n=1

εnk|unk〉〈unk| with 〈unk|un′k〉L2
per(Ω) = δnn′, ε1k ≤ ε2k ≤ · · ·

ρ0(r) = 2

 
Ω∗

+∞∑
n=1

1εnk≤εF
|unk(r)|2 dk,

ˆ
Ω

ρ0(r) dr = N

The supercell method with ΩM = [0,Ma)3, Ec and λsc = ∞, amounts to
discretizing the Brillouin zone Ω∗ with the grid L∗M ∩Ω∗, and using for each
k ∈ L∗M ∩ Ω∗ a variational approximations of Hρ0

k in the space X per
Ec,k


