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Motivation : Kohn—Sham model (1965)

Compute the electronic density of a molecu-
lar system.

Mathematical problem : M nonlinear eigen-
value equations in 3D

Find M orthonormal eigenfunctions
M
=~ (@) e X = {0 =61 om) € [H@]"| [ 6101}

with corresponding lowest eigenvalues \Y, ..., )\%/,, such that

M
(_A + VR P[mol) ¢ = A¢l, i=1,...,M, with Ploo] = 22 6?12,

i=1

Difficulties : Several eigenvalues to compute, possibly degenerate,
nonlinearity. In practice, approximate solutions.

How to estimate the errors?

N)
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Different levels of approximations

Input {Ry} 1- Model error
tomi i
(atomic EOSI fons) Error of the mathematical model with

respect to a reference model.
Reference model

! In our case :
Approximate _
model » Simplification of the Schrédinger

equation
» Dimension reduction

» Introduction of a nonlinear
eigenvalue problem (DFT)

» K-point sampling

» Pseudopotentials



Different levels

Input {Ry}
(atomic positions)
1

Reference model

!

Approximate
model

!

Discretization

of approximations

1- Model error

2- Discretization error

Error between the solution in the
whole space X and the solution in the
approximate space Xj

Different discretization methods :
» Finite elements
» Planewaves
» Wavelets

» Gaussians
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Different levels

Input {Ry}
(atomic positions)
1

Reference model

!

Approximate
model

!

Discretization

I

Numerical scheme

of approximations

1- Model error
2- Discretization error
3- Algorithmic error

Error between the solution on the discrete
space Xp and the solution computed with
the chosen algorithm

Example :

» Use of an iterative process to solve
the problem (finite number of
iterations)



Different levels of approximations

Input {Ry} 1- Model error

(atomic positions) ) o
1 2- Discretization error

Reference model
1 3- Algorithmic error

Approximate
4- Numerical error

model
i}
Discretization » Numerical integration errors
. v » Roundoff errors
Numerical scheme
! » Errors caused by possible defects in
Computer code computer codes (bugs or random
! hardware failures)

Computed output



Toward certified and optimized molecular simulations

A lot of approximations

» How large is the total error?
» How large is each error component ?

Two main goals :
1. Certify the precision of the results.
2. Optimize the computational ressources : minimize the computational
cost to obtain a desired accuracy.

4/30



Wish-list for a good error bound

Computed solution: (P, \)
[

Exact solution: (®°,X°) ”n
‘ H

The goal is to derive an inequality of the type :

(92, A%) — (&, \)||> < n(disc., algo.,...) = Error bound

Properties of the error bound :

1.

ok N

Computable upper bound of the error
Valid under checkable assumptions
Efficient (close to the error)

Cheap to compute

Allow adaptivity
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Outline

Error estimation for a boundary value problem
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Error estimation for a boundary value problem

Problem : solve Au = f.
Residual Res(v) = Av — f.
There holds Res(u) = 0 but in general Res(uy) # 0.

Measure on the error with respect to the equation.

Galerkin method : Solve
(Au,v) = (f,v) VveV.

Discrete problem :
(Aun, v) = (f,v) Vv e Wy.

Error estimation :
(Res(up),v) = (Auy — f,v) YveV
= (A(uy —u),v) YvevVv
We obtain
IAY2(uy = u)|| < [| A2 Res(un)l-

(AY/2 norm corresponds to energy norm)

~
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Bauer—Fikke error bound for eigenvalue problems

Problem : Solve Au = Au.
Approximate solution (un, Ay) @ Resy = Auy — Anup.

Theorem (Bauer-Fike)

Assumption : A is a diagonalizable matrix.

Let X be the matrix that transforms it into diagonal form. Then, there exists
an eigenvalue A of A such that

A — An| < Cond(X)||Resn||2
Hermitian case : If A is hermitian, then

|)\ — >\N| S HResN||2.
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Proof

Assume that Ay is not an eigenvalue of A.
Diagonalization of A: A= XDX!.
ResN = AUN — >\NUN-

uy = (A — /\N)flReSN
= X(D — Ay) " 1X " 1Resy

Therefore,

1=X(D— Ay) X" 1Resy

< IXI2(D = An) 2l X[z Reswll2-

Hence

1 < Cond(X)||Resyll2 max |[A\; — An| L.
M EN(A)

(See Saad 1992)
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Numerical illustration

—-— err eigenvalues
—— Bauer-Fikke

108} B
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Kato—Temple error bounds for eigenvalue problems

Theorem (Kato—Temple) Let up be an approximate eigenvector of A and
An = (Aup, up). Let X be the eigenvalue closest to Ay and ¢ the distance
from Ay to the rest of the spectrum

(S:m'in{|)\,'*>\/\/‘, )\,75)\}

Then

|| Res[3
Ay — A < NI
N=A=""5

Proof : First show that (5 — An)(An — ) < ||Resn
contains Ay and no eigenvalue of A.

\% where (a, )

See Cances, Herbst, Levitt, Faraday Discussions, 2020.
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Numerical illustration

—-— err eigenvalues
1072} —— Bauer-Fikke
—— Kato-Temple

10—47____""""‘-————--______________________

10—6 |

1078} T
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An asymptotically optimal bound

Theorem (Cances, D., Maday, Stamm, Vohralik)

First bound :
IAn = Al < [JAT2Resy |13 + (A + An)llu — un )3

Second bound :
IAv = Al < Gyt IATY2Resy I3

where Cy = min {(1 - )j'\l_vl)2’ (1 - )‘/le)z}

See Cances, Dusson, Maday, Stamm, Vohralik, Math. Comput. 89,

2563-2611 (2020).
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Numerical illustration

—-— err eigenvalues
10~2t —— Bauer-Fikke

—— Kato-Temple
-==Opt. bound (asymp.)
L —— Using dual norm
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Outline

Error estimation for nonlinear problems
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Abstract formulation

Problem : Solve R(x) = 0, solution x.
Example : x = (®, ).
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Abstract formulation

Problem : Solve R(x) = 0, solution x.
Example : x = (®, ).

Residual of the problem :

S (~rA+ V)P —rd £o0.
R(X)‘{ o2 =1
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Abstract formulation

Problem : Solve R(x) = 0, solution x.
Example : x = (®, ).

Residual of the problem :

S (~rA+ V)P —rd £o0.
R(X)‘{ o2 =1

Taylor expansion close to a solution x; :
R(x) ~ DR(x)(x — xx).

Hence,
X — %, ~ [DR(x)]1R(x).
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Abstract formulation
Problem : Solve R(x) = 0, solution x.

Example : x = (®, ).

Residual of the problem :

S (~rA+ V)P —rd £o0.
R(X)‘{ ]2 =1

Taylor expansion close to a solution x; :
R(x) ~ DR(x)(x — xx).

Hence,
X — %, ~ [DR(x)]1R(x).

Quantity of interest : A
I(x) = I(x.) ~ [DI(x)][DR(x)]"*R(x).

To estimate the error, one needs to estimate [D/(x)][DR(x)] 1 R(x).

Possible bound : ||[DI(x)]||[[[DR(x)]{|[|R(x)]|-

16
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Guaranteed bounds
Solve R(x) =0 with R: Y — Z.
Inverse function theorem - Newton—Kantorovitch !

Two conditions to be satisfied :

» DR(x) € L(Y;Z) is an isomorphism
> 2||DR(x) " z,v' L2IIDR(x) M|z R(x)]lz7) <1

2IDRG)MHR

with L(a)= sup [IDR(x)— DR(y)|ly,z-
YEB(x,a) [ ]

X
Then the problem R(x) = 0 has a unique solution x,

in the ball B(x, 2||DR(x)~|z.y/||R(x)||z')-

Moreover, | [x — x[ly <2 DR(x)" |z, v/ [R(x)]z-

» Possible to obtain guaranteed bounds
» Requires control over first and second order derivatives

» Result on existence of solution

1. Caloz, Rappaz : Numerical analysis for nonlinear and bifurcation problems. Handb. Numer.
Anal. 5, 487-637 (1997).
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Main difficulties for applications to DFT

v

Structure of the problem not too easy to write in this form -
constraints and degeneracies

v

Computation of the inverse of the Jacobian very costly

Choice of the norm in

v

Ix = xlly < 2[1DF ()" z,y [ F(x)l| 2.

v

Inequalities may be suboptimal

Practical error bounds for DFT problems 2

2. Cances, D., Kemlin, Levitt : Practical error bounds for properties in plane-wave

electronic structure calculations, http ://arxiv.org/abs/2111.01470, (2021)
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Outline

Fully guaranteed bounds
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Problem presentation : the Gross-Pitaevskii equation

Physical problem : Ground state of a system of bosons at very low
temperature.
Nonlinear eigenvalue problem : Find (¢°, \°%) € H;E(Q) such that

0, —
[¢"]li2 =1 and (—A—|— V—i—(gbo)z)gbo:)\oqﬁo.

Setting : 1-Dimensional, Periodic Setting.

Potential Exact solution
7.5 1.4
7
1.2
6.5
6 1
5.5
0.8
5
4.5 0.6
0 0.5 1 1.5 2 0 0.5 1 15 2

X
Remark : \? is the lowest eigenvalue and is simple.

Exact solution : (¢°, \%)
Resolution with planewave discretization and iterative algorithm

20/30



A posteriori analysis—Approach

How to find a guaranteed, computable and guaranteed upper bound
of the error ||¢° — @K |52 ?

Residual-based a posteriori analysis :
Res(, An) = (A + V + (7))l — AN
First-order development of the residual :
0 = Res(¢° A%) = Res(¢f, Ay) + DRes(gx xey(¢° — )
¢° — 0l = —DRes } ) (Res(dff, AR))

» A first coarse bound based on inverse function theorem, writing
16° = @yl < 20DResh ool [IRes(@ly, ARl -2
» A second precise bound valid only in the asymptotic regime, writing
—DRes; 0k Ak) (Res(qﬁf‘\,,)\ﬁ,)) = — A" Res(¢f, \K) + superconvergent terms.

Ref : Dusson, Maday 2017.
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First a posteriori bound

To characterize the error bound :
» Determine computable conditions on N and k s.t. DReS(¢;<V7>\;<V) is an
isomorphism
» Find a computable bound for HDReS(?z)%’)‘ﬂ)||H717H1

Extra-computation : Resolution of a discrete linear eigenvalue problem.

Theorems (D., Maday) :

» Guaranteed bound : Under the previous conditions, there exists a
unique (¢, A) such that Res(¢, A) = 0 and

¢ = &l + 1A = AR | < 2v[|Res(¢f, AN)|[ 11 (1)

» Ground state : There exists a computable condition depending on

lp — k|, IX— AK | @K, Ak, 1k, u3, guaranteeing that (¢, \) is the
ground state (¢°, A\°) of our problem.

A coarse a posteriori error bound valid under computable conditions.



Second a posteriori bound

Theorem [Asymptotic error bound] (D., Maday) :
If |¢° — @k || g2 and |AO — AK| are small enough, then we can show that

(1—e(8% — oK, A° = AR)) 16° = on Il < [Res(dp ARl -1 + F (SR> AN s 1)
where

> e(¢° — d)ﬂ‘v, N0 — /\f‘v) ——— 0 can be estimated with the first
60—l 1 —0
bound

> F(¢f, A, ik, 43)) is asymptotically small, and equal to 0 if
1V + 3(6) — A — 1)l 1= = 0.
Asymptotically,
19° — oN Il < aylRes(dp, ANl 1-1,
with af‘v computable and as close to 1 as we wish.

Better bound...but guaranteed only if the error is small enough.
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Numerical simulations

» Fourier coefficients of
the potential V are

Algorithm convergence to the exact solution

given by Vy = Potential
1 1
Vor [k = F ’
» Reference solution 1
computed in a % i 2

discrete space with
N=500.

Plot of the error during the iterations (N=120)

10°
e
Second bound oy
10'2 F e,
first guaranteed bound
—llu-ugll o
-
107
[
S 1000 Caloz-Rappaz
&
1080
1000
2 .
10
0 5 10 1 20 25
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Outline

Error balance between several parameters
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Error balance for efficient simulation

How to perform efficient simulations using error bounds ?

Example : Error estimation comes from different sources 1, 2, 3.
Erryot ~ Erry 4+ Erro + Errs.
Efficient scheme : try to balance the errors
Err; ~ Errp ~ Errs.

In that direction :
» Discretization and SCF iterations [D., Maday, IMA J. Numer. Anal. (2017)]

» Discretization and eigenvalue solver [Cances, D., Maday, Stamm, Vohralik,
Numer. Math. (2018)]

26
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Example of error balance

D., Maday, IMA J. Numer. Anal. (2017) : Gross-Pitaevskii-type eigenvalue
problem (in 1d).
Two sources of error : discretization (dimension 2N + 1), iterations (k).

How to get the best compromise between the discretization and the num-
ber of iterations?

1. Decompose the residual into two parts :

pr‘v¢l/<\/ - )‘;(V¢7V = Resy,x = Resy + Resy,
ith L
h Resw = Hyg-10f — M ok
Resk = Hyy 0 Hyofy = Mok + 70

2. Decompose the error bound : essentially,
16°—oNll < anlRes(dn, AN+ < o ([Reswlly-1 + [[Resk]| 1)

3. Compute each of these terms for adaptative refinement.



Error balance results

Errors

10710

10712
0

erry > 0.lerry

Initialization
sinit yinit
(DR, AN, )

Discretization error
too large:

Increase N

erTior < €

Return

7| @k M%)

Error balance

Iteration error

too large

Evolution of N

One iteration Compute
k=k+1 |—» erTiot
ko \k
(N, AN) erry, err,
else
o,
1201
Ot
first guaranteed bound
HHu-ufll 100 -
Caloz-Rappaz 80+
bound
Z 60
40+
20+
0
0

15 20 25
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Combining several sources of errors

In that direction :

» SCF error and basis set error [Maday, D. 2014]

» |nexact solver : error balance between iteration and discretization
error 3

» Error bounds on the whole band structure

Akn T T T T T

35 b
30 - B
> W
20 -

possible band gap
15 - -

10 - b

5k -

| 1 1 1
0,0 (x/2,7/2) (mm) (m7/2)  (w0)  (7/2,0)  (0,0)

3. Cances, D., Maday, Stamm, Vohralik : Guaranteed and robust a posteriori bounds for
Laplace eigenvalues and eigenvectors : a unified framework. Numer. Math. 140,
1033-1079 (2018)

4. Hoang, Plum, Wieners : A computer-assisted proof for photonic band gaps. Z.
Angew. Math. Phys. 60, 1035 (2009). 29/30



Conclusion

» Error bounds for clusters of eigenvalues, density matrices and
quantities of interest

» Computable bounds available if dual norms of the residual can be
estimated /computed

» Balance to find between computational cost and accuracy of error
bound
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Conclusion

» Error bounds for clusters of eigenvalues, density matrices and
quantities of interest

» Computable bounds available if dual norms of the residual can be
estimated /computed

» Balance to find between computational cost and accuracy of error
bound

Thank you for your attention.
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